Разложение в ряд тейлора. Что значит разложить число на простые множители

Рассмотрим следующие выражения со степенями (a + b) n , где a + b есть любой бином, а n - целое число.

Каждое выражение - это полином. Во всех выражениях можно заметить особенности.

1. В каждом выражении на одно слагаемое больше, чем показатель степени n.

2. В каждом слагаемом сумма степеней равна n, т.е. степени, в которую возводится бином.

3. Степени начинаются со степени бинома n и уменьшаются к 0. Последний член не имеет множителя a. Первый член не имеет множителя b, т.е. степени b начинаются с 0 и увеличиваются до n.

4. Коэффициенты начинаются с 1 и увеличиваются на определенные значения до "половины пути", а потом уменьшаются на те же значения обратно к 1.

Давайте рассмотрим коэффициенты подробнее. Предположим, что мы хотим найти значение (a + b) 6 . Согласно особенности, которую мы только что заметили, здесь должно быть 7 членов
a 6 + c 1 a 5 b + c 2 a 4 b 2 + c 3 a 3 b 3 + c 4 a 2 b 4 + c 5 ab 5 + b 6 .
Но как мы можем определить значение каждого коэффициента, c i ? Мы можем сделать это двумя путями. Первый метод включает в себя написание коэффициентов треугольником, как показано ниже. Это известно как Треугольник Паскаля :


Есть много особенностей в треугольнике. Найдите столько, сколько сможете.
Возможно вы нашли путь, как записать следующую строку чисел, используя числа в строке выше. Единицы всегда расположены по сторонам. Каждое оставшееся число это сумма двух чисел, расположенных выше этого числа. Давайте попробуем отыскать значение выражения (a + b) 6 путем добавления следующей строки, используя особенности, которые мы нашли:

Мы видим, что в последней строке

первой и последнее числа 1 ;
второе число равно 1 + 5, или 6 ;
третье число это 5 + 10, или 15 ;
четвертое число это 10 + 10, или 20 ;
пятое число это 10 + 5, или 15 ; и
шестое число это 5 + 1, или 6 .

Таким образом, выражение (a + b) 6 будет равно
(a + b) 6 = 1 a 6 + 6 a 5 b + 15 a 4 b 2 + 20 a 3 b 3 + 15 a 2 b 4 + 6 ab 5 + 1 b 6 .

Для того, чтобы возвести в степень (a + b) 8 , мы дополняем две строки к треугольнику Паскаля:

Тогда
(a + b) 8 = a 8 + 8a 7 b + 28a 6 b 2 + 56a 5 b 3 + 70a 4 b 4 + 56a 3 b 5 + 28a 2 b 6 + 8ab 7 + b 8 .

Мы можем обобщить наши результаты следующим образом.

Бином Ньютона с использованием треугольника Паскаля

Для любого бинома a+ b и любого натурального числа n,
(a + b) n = c 0 a n b 0 + c 1 a n-1 b 1 + c 2 a n-2 b 2 + .... + c n-1 a 1 b n-1 + c n a 0 b n ,
где числа c 0 , c 1 , c 2 ,...., c n-1 , c n взяты с (n + 1) ряда треугольника Паскаля.

Пример 1 Возведите в степень: (u - v) 5 .

Решение У нас есть (a + b) n , где a = u, b = -v, и n = 5. Мы используем 6-й ряд треугольника Паскаля:
1 5 10 10 5 1
Тогда у нас есть
(u - v) 5 = 5 = 1 (u) 5 + 5 (u) 4 (-v) 1 + 10 (u) 3 (-v) 2 + 10 (u) 2 (-v) 3 + 5 (u)(-v) 4 + 1 (-v) 5 = u 5 - 5u 4 v + 10u 3 v 2 - 10u 2 v 3 + 5uv 4 - v 5 .
Обратите внимание, что знаки членов колеблются между + и -. Когда степень -v есть нечетным числом, знак -.

Пример 2 Возведите в степень: (2t + 3/t) 4 .

Решение У нас есть (a + b) n , где a = 2t, b = 3/t, и n = 4. Мы используем 5-й ряд треугольника Паскаля:
1 4 6 4 1
Тогда мы имеем

Разложение бинома используя значения факториала

Предположим, что мы хотим найти значение (a + b) 11 . Недостаток в использовании треугольника Паскаля в том, что мы должны вычислить все предыдущие строки треугольника, чтобы получить необходимый ряд. Следующий метод позволяет избежать этого. Он также позволяет найти определенную строку - скажем, 8-ю строку - без вычисления всех других строк. Этот метод полезен в вычислениях, статистике и он использует биномиальное обозначение коэффициента .
Мы можем сформулировать бином Ньютона следующим образом.

Бином Ньютона с использованием обозначение факториала

Для любого бинома (a + b) и любого натурального числа n,
.

Бином Ньютона может быть доказан методом математической индукции. Она показывает почему называется биноминальным коэффициентом .

Пример 3 Возведите в степень: (x 2 - 2y) 5 .

Решение У нас есть (a + b) n , где a = x 2 , b = -2y, и n = 5. Тогда, используя бином Ньютона, мы имеем


Наконец, (x 2 - 2y) 5 = x 10 - 10x 8 y + 40x 6 y 2 - 80x 4 y 3 + 80x 2 y 4 - 35y 5 .

Пример 4 Возведите в степень: (2/x + 3√x ) 4 .

Решение У нас есть (a + b) n , где a = 2/x, b = 3√x , и n = 4. Тогда, используя бином Ньютона, мы получим


Finally (2/x + 3√x ) 4 = 16/x 4 + 96/x 5/2 + 216/x + 216x 1/2 + 81x 2 .

Нахождение определенного члена

Предположим, что мы хотим определить тот или иной член термин из выражения. Метод, который мы разработали, позволит нам найти этот член без вычисления всех строк треугольника Паскаля или всех предыдущих коэффициентов.

Обратите внимание, что в биноме Ньютона дает нам 1-й член, дает нам 2-й член, дает нам 3-й член и так далее. Это может быть обощено следующим образом.

Нахождение (k + 1) члена

(k + 1) член выражения (a + b) n есть .

Пример 5 Найдите 5-й член в выражении (2x - 5y) 6 .

Решение Во-первых, отмечаем, что 5 = 4 + 1. Тогда k = 4, a = 2x, b = -5y, и n = 6. Тогда 5-й член выражения будет

Пример 6 Найдите 8-й член в выражении (3x - 2) 10 .

Решение Во-первых, отмечаем, что 8 = 7 + 1. Тогда k = 7, a = 3x, b = -2 и n = 10. Тогда 8-й член выражения будет

Общее число подмножеств

Предположим, что множество имеет n объектов. Число подмножеств, содержащих k элементов есть . Общее число подмножеств множества есть число подмножеств с 0 элементами, а также число подмножеств с 1 элементом, а также число подмножеств с 2-мя элементами и так далее. Общее число подмножеств множества с n элементами есть
.
Теперь давайте рассмотрим возведение в степень (1 + 1) n:

.
Так. общее количество подмножеств (1 + 1) n , или 2 n . Мы доказали следующее.

Полное число подмножеств

Полное число подмножеств множества с n элементами равно 2 n .

Пример 7 Сколько подмножеств имеет множество {A, B, C, D, E}?

Решение Множество имеет 5 элементов, тогда число подмножеств равно 2 5 , или 32.

Пример 8 Сеть ресторанов Венди предлагает следующую начинку для гамбургеров:
{кетчуп, горчица, майонез, помидоры, салат, лук, грибы, оливки, сыр }.
Сколько разных видов гамбургеров может предложить Венди, исключая размеры гамбургеров или их количество?

Решение Начинки на каждый гамбургер являются элементами подмножества множества всех возможных начинок, а пустое множество это просто гамбургер. Общее число возможных гамбургеров будет равно

. Таким образом, Венди может предложить 512 различных гамбургеров.


В этой статье Вы найдете всю необходимую информацию, отвечающую на вопрос, как разложить число на простые множители . Сначала дано общее представление о разложении числа на простые множители, приведены примеры разложений. Дальше показана каноническая форма разложения числа на простые множители. После этого дан алгоритм разложения произвольных чисел на простые множители и приведены примеры разложения чисел с использованием этого алгоритма. Также рассмотрены альтернативные способы, позволяющие быстро раскладывать небольшие целые числа на простые множители с использованием признаков делимости и таблицы умножения.

Навигация по странице.

Что значит разложить число на простые множители?

Сначала разберемся с тем, что такое простые множители.

Понятно, раз в этом словосочетании присутствует слово «множители», то имеет место произведение каких-то чисел, а уточняющее слово «простые» означает, что каждый множитель является простым числом . Например, в произведении вида 2·7·7·23 присутствуют четыре простых множителя: 2 , 7 , 7 и 23 .

А что же значит разложить число на простые множители?

Это значит, что данное число нужно представить в виде произведения простых множителей, причем значение этого произведения должно быть равно исходному числу. В качестве примера рассмотрим произведение трех простых чисел 2 , 3 и 5 , оно равно 30 , таким образом, разложение числа 30 на простые множители имеет вид 2·3·5 . Обычно разложение числа на простые множители записывают в виде равенства, в нашем примере оно будет таким: 30=2·3·5 . Отдельно подчеркнем, что простые множители в разложении могут повторяться. Это явно иллюстрирует следующий пример: 144=2·2·2·2·3·3 . А вот представление вида 45=3·15 не является разложением на простые множители, так как число 15 – составное.

Возникает следующий вопрос: «А какие вообще числа можно разложить на простые множители»?

В поисках ответа на него, приведем следующие рассуждения. Простые числа по определению находятся среди , больших единицы. Учитывая этот факт и , можно утверждать, что произведение нескольких простых множителей является целым положительным числом, превосходящим единицу. Поэтому разложение на простые множители имеет место лишь для положительных целых чисел, которые больше 1 .

Но все ли целые числа, превосходящие единицу, раскладываются на простые множители?

Понятно, что простые целые числа разложить на простые множители нет возможности. Это объясняется тем, что простые числа имеют только два положительных делителя – единицу и самого себя, поэтому они не могут быть представлены в виде произведения двух или большего количества простых чисел. Если бы целое число z можно было бы представить в виде произведения простых чисел a и b , то понятие делимости позволило бы сделать вывод, что z делится и на a и на b , что невозможно в силу простоты числа z. Однако считают, что любое простое число само является своим разложением.

А как насчет составных чисел? Раскладываются ли составные числа на простые множители, и все ли составные числа подлежат такому разложению? Утвердительный ответ на ряд этих вопросов дает основная теорема арифметики . Основная теорема арифметики утверждает, что любое целое число a , которое больше 1 , можно разложить на произведение простых множителей p 1 , p 2 , …, p n , при этом разложение имеет вид a=p 1 ·p 2 ·…·p n , причем это разложение единственно, если не учитывать порядок следования множителей

Каноническое разложение числа на простые множители

В разложении числа простые множители могут повторяться. Повторяющиеся простые множители можно записать более компактно, используя . Пусть в разложении числа a простой множитель p 1 встречается s 1 раз, простой множитель p 2 – s 2 раз, и так далее, p n – s n раз. Тогда разложение на простые множители числа a можно записать как a=p 1 s 1 ·p 2 s 2 ·…·p n s n . Такая форма записи представляет собой так называемое каноническое разложение числа на простые множители .

Приведем пример канонического разложения числа на простые множители. Пусть нам известно разложение 609 840=2·2·2·2·3·3·5·7·11·11 , его каноническая форма записи имеет вид 609 840=2 4 ·3 2 ·5·7·11 2 .

Каноническое разложение числа на простые множители позволяет найти все делители числа и число делителей числа .

Алгоритм разложения числа на простые множители

Чтобы успешно справиться с задачей разложения числа на простые множители, нужно очень хорошо владеть информацией статьи простые и составные числа .

Суть процесса разложения целого положительного и превосходящего единицу числа a понятна из доказательства основной теоремы арифметики . Смысл состоит в последовательном нахождении наименьших простых делителей p 1 , p 2 , …,p n чисел a, a 1 , a 2 , …, a n-1 , что позволяет получить ряд равенств a=p 1 ·a 1 , где a 1 =a:p 1 , a=p 1 ·a 1 =p 1 ·p 2 ·a 2 , где a 2 =a 1:p 2 , …, a=p 1 ·p 2 ·…·p n ·a n , где a n =a n-1:p n . Когда получается a n =1 , то равенство a=p 1 ·p 2 ·…·p n даст нам искомое разложение числа a на простые множители. Здесь же следует заметить, что p 1 ≤p 2 ≤p 3 ≤…≤p n .

Осталось разобраться с нахождением наименьших простых делителей на каждом шаге, и мы будем иметь алгоритм разложения числа на простые множители. Находить простые делители нам поможет таблица простых чисел . Покажем, как с ее помощью получить наименьший простой делитель числа z .

Последовательно берем простые числа из таблицы простых чисел (2 , 3 , 5 , 7 , 11 и так далее) и делим на них данное число z . Первое простое число, на которое z разделится нацело, и будет его наименьшим простым делителем. Если число z простое, то его наименьшим простым делителем будет само число z . Здесь же следует напомнить, что если z не является простым числом, то его наименьший простой делитель не превосходит числа , где - из z . Таким образом, если среди простых чисел, не превосходящих , не нашлось ни одного делителя числа z , то можно делать вывод о том, что z – простое число (более подробно об этом написано в разделе теории под заголовком данное число простое или составное).

Для примера покажем, как найти наименьший простой делитель числа 87 . Берем число 2 . Делим 87 на 2 , получаем 87:2=43 (ост. 1) (если необходимо, смотрите статью ). То есть, при делении 87 на 2 получается остаток 1 , поэтому 2 – не является делителем числа 87 . Берем следующее простое число из таблицы простых чисел, это число 3 . Делим 87 на 3 , получаем 87:3=29 . Таким образом, 87 делится на 3 нацело, следовательно, число 3 является наименьшим простым делителем числа 87 .

Заметим, что в общем случае для разложения на простые множители числа a нам потребуется таблица простых чисел до числа, не меньшего, чем . К этой таблице нам придется обращаться на каждом шаге, так что ее нужно иметь под рукой. Например, для разложения на простые множители числа 95 нам будет достаточно таблицы простых чисел до 10 (так как 10 больше, чем ). А для разложения числа 846 653 уже будет нужна таблица простых чисел до 1 000 (так как 1 000 больше, чем ).

Теперь мы обладаем достаточными сведениями, чтобы записать алгоритм разложения числа на простые множители . Алгоритм разложения числа a таков:

  • Последовательно перебирая числа из таблицы простых чисел, находим наименьший простой делитель p 1 числа a , после чего вычисляем a 1 =a:p 1 . Если a 1 =1 , то число a – простое, и оно само является своим разложением на простые множители. Если же a 1 на равно 1 , то имеем a=p 1 ·a 1 и переходим к следующему шагу.
  • Находим наименьший простой делитель p 2 числа a 1 , для этого последовательно перебираем числа из таблицы простых чисел, начиная с p 1 , после чего вычисляем a 2 =a 1:p 2 . Если a 2 =1 , то искомое разложение числа a на простые множители имеет вид a=p 1 ·p 2 . Если же a 2 на равно 1 , то имеем a=p 1 ·p 2 ·a 2 и переходим к следующему шагу.
  • Перебирая числа из таблицы простых чисел, начиная с p 2 , находим наименьший простой делитель p 3 числа a 2 , после чего вычисляем a 3 =a 2:p 3 . Если a 3 =1 , то искомое разложение числа a на простые множители имеет вид a=p 1 ·p 2 ·p 3 . Если же a 3 на равно 1 , то имеем a=p 1 ·p 2 ·p 3 ·a 3 и переходим к следующему шагу.
  • Находим наименьший простой делитель p n числа a n-1 , перебирая простые числа, начиная с p n-1 , а также a n =a n-1:p n , причем a n получается равно 1 . Этот шаг является последним шагом алгоритма, здесь получаем искомое разложение числа a на простые множители: a=p 1 ·p 2 ·…·p n .

Все результаты, полученные на каждом шаге алгоритма разложения числа на простые множители, для наглядности представляют в виде следующей таблицы, в которой слева от вертикальной черты записывают последовательно в столбик числа a, a 1 , a 2 , …, a n , а справа от черты – соответствующие наименьшие простые делители p 1 , p 2 , …, p n .

Осталось лишь рассмотреть несколько примеров применения полученного алгоритма для разложения чисел на простые множители.

Примеры разложения на простые множители

Сейчас мы подробно разберем примеры разложения чисел на простые множители . При разложении будем применять алгоритм из предыдущего пункта. Начнем с простых случаев, и постепенно их будем усложнять, чтобы столкнуться со всеми возможными нюансами, возникающими при разложении чисел на простые множители.

Пример.

Разложите число 78 на простые множители.

Решение.

Начинаем поиск первого наименьшего простого делителя p 1 числа a=78 . Для этого начинаем последовательно перебирать простые числа из таблицы простых чисел. Берем число 2 и делим на него 78 , получаем 78:2=39 . Число 78 разделилось на 2 без остатка, поэтому p 1 =2 – первый найденный простой делитель числа 78 . В этом случае a 1 =a:p 1 =78:2=39 . Так мы приходим к равенству a=p 1 ·a 1 имеющему вид 78=2·39 . Очевидно, что a 1 =39 отлично от 1 , поэтому переходим ко второму шагу алгоритма.

Теперь ищем наименьший простой делитель p 2 числа a 1 =39 . Начинаем перебор чисел из таблицы простых чисел, начиная с p 1 =2 . Делим 39 на 2 , получаем 39:2=19 (ост. 1) . Так как 39 не делится нацело на 2 , то 2 не является его делителем. Тогда берем следующее число из таблицы простых чисел (число 3 ) и делим на него 39 , получаем 39:3=13 . Следовательно, p 2 =3 – наименьший простой делитель числа 39 , при этом a 2 =a 1:p 2 =39:3=13 . Имеем равенство a=p 1 ·p 2 ·a 2 в виде 78=2·3·13 . Так как a 2 =13 отлично от 1 , то переходим к следующему шагу алгоритма.

Здесь нам нужно отыскать наименьший простой делитель числа a 2 =13 . В поисках наименьшего простого делителя p 3 числа 13 будем последовательно перебирать числа из таблицы простых чисел, начиная с p 2 =3 . Число 13 не делится на 3 , так как 13:3=4 (ост. 1) , также 13 не делится на 5 , 7 и на 11 , так как 13:5=2 (ост. 3) , 13:7=1 (ост. 6) и 13:11=1 (ост. 2) . Следующим простым числом является 13 , и на него 13 делится без остатка, следовательно, наименьший простой делитель p 3 числа 13 есть само число 13 , и a 3 =a 2:p 3 =13:13=1 . Так как a 3 =1 , то этот шаг алгоритма является последним, а искомое разложение числа 78 на простые множители имеет вид 78=2·3·13 (a=p 1 ·p 2 ·p 3 ).

Ответ:

78=2·3·13 .

Пример.

Представьте число 83 006 в виде произведения простых множителей.

Решение.

На первом шаге алгоритма разложения числа на простые множители находим p 1 =2 и a 1 =a:p 1 =83 006:2=41 503 , откуда 83 006=2·41 503 .

На втором шаге выясняем, что 2 , 3 и 5 не являются простыми делителями числа a 1 =41 503 , а число 7 – является, так как 41 503:7=5 929 . Имеем p 2 =7 , a 2 =a 1:p 2 =41 503:7=5 929 . Таким образом, 83 006=2·7·5 929 .

Наименьшим простым делителем числа a 2 =5 929 является число 7 , так как 5 929:7=847 . Таким образом, p 3 =7 , a 3 =a 2:p 3 =5 929:7=847 , откуда 83 006=2·7·7·847 .

Дальше находим, что наименьший простой делитель p 4 числа a 3 =847 равен 7 . Тогда a 4 =a 3:p 4 =847:7=121 , поэтому 83 006=2·7·7·7·121 .

Теперь находим наименьший простой делитель числа a 4 =121 , им является число p 5 =11 (так как 121 делится на 11 и не делится на 7 ). Тогда a 5 =a 4:p 5 =121:11=11 , и 83 006=2·7·7·7·11·11 .

Наконец, наименьший простой делитель числа a 5 =11 – это число p 6 =11 . Тогда a 6 =a 5:p 6 =11:11=1 . Так как a 6 =1 , то этот шаг алгоритма разложения числа на простые множители является последним, и искомое разложение имеет вид 83 006=2·7·7·7·11·11 .

Полученный результат можно записать как каноническое разложение числа на простые множители 83 006=2·7 3 ·11 2 .

Ответ:

83 006=2·7·7·7·11·11=2·7 3 ·11 2 991 – простое число. Действительно, оно не имеет ни одного простого делителя, не превосходящего ( можно грубо оценить как , так как очевидно, что 991<40 2 ), то есть, наименьшим делителем числа 991 является оно само. Тогда p 3 =991 и a 3 =a 2:p 3 =991:991=1 . Следовательно, искомое разложение числа 897 924 289 на простые множители имеет вид 897 924 289=937·967·991 .

Ответ:

897 924 289=937·967·991 .

Использование признаков делимости для разложения на простые множители

В простых случаях разложить число на простые множители можно без использования алгоритма разложения из первого пункта данной статьи. Если числа не большие, то для их разложения на простые множители часто достаточно знать и признаки делимости . Приведем примеры для пояснения.

Например, нам требуется разложить на простые множители число 10 . Из таблицы умножения мы знаем, что 2·5=10 , а числа 2 и 5 очевидно простые, поэтому разложение на простые множители числа 10 имеет вид 10=2·5 .

Еще пример. При помощи таблицы умножения разложим на простые множители число 48 . Мы знаем, что шестью восемь – сорок восемь, то есть, 48=6·8 . Однако, ни 6 , ни 8 не являются простыми числами. Но мы знаем, что дважды три – шесть, и дважды четыре – восемь, то есть, 6=2·3 и 8=2·4 . Тогда 48=6·8=2·3·2·4 . Осталось вспомнить, что дважды два – четыре, тогда получим искомое разложение на простые множители 48=2·3·2·2·2 . Запишем это разложение в канонической форме: 48=2 4 ·3 .

А вот при разложении на простые множители числа 3 400 можно воспользоваться признаками делимости. Признаки делимости на 10, 100 позволяют утверждать, что 3 400 делится на 100 , при этом 3 400=34·100 , а 100 делится на 10 , при этом 100=10·10 , следовательно, 3 400=34·10·10 . А на основании признака делимости на 2 можно утверждать, что каждый из множителей 34 , 10 и 10 делится на 2 , получаем 3 400=34·10·10=2·17·2·5·2·5 . Все множители в полученном разложении являются простыми, поэтому это разложение является искомым. Осталось лишь переставить множители, чтобы они шли в порядке возрастания: 3 400=2·2·2·5·5·17 . Запишем также каноническое разложение данного числа на простые множители: 3 400=2 3 ·5 2 ·17 .

При разложении данного числа на простые множители можно использовать по очереди и признаки делимости и таблицу умножения. Представим число 75 в виде произведения простых множителей. Признак делимости на 5 позволяет нам утверждать, что 75 делится на 5 , при этом получаем, что 75=5·15 . А из таблицы умножения мы знаем, что 15=3·5 , поэтому, 75=5·3·5 . Это и есть искомое разложение числа 75 на простые множители.

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
  • Виноградов И.М. Основы теории чисел.
  • Михелович Ш.Х. Теория чисел.
  • Куликов Л.Я. и др. Сборник задач по алгебре и теории чисел: Учебное пособие для студентов физ.-мат. специальностей педагогических институтов.

Частный случай ряда Тейлора при х 0 =0

н азываемся рядом Маклорена для функции f (x ).

Найдем разложение некоторых элементарных функций в ряд Маклорена.

Пример 23


.

Решение.

Для решения задачи будем использовать алгоритм, сформулированный выше. Так как требуется разложить функцию в ряд Маклорена, следовательно, будем искать разложение в окрестности точки х 0 = 0.

Найдем значение функции в точке х 0 =0, производные функции до п -го порядка и их значения при х 0 = 0:

Запишемформально ряд Маклорена по формуле

Заметим, что получили рад по нечетным степеням, так как коэффициенты при четных степенях (когда п - четное число) равны нулю.

Найдем область сходимости полученного ряда, для этого составим ряд из абсолютных величин членов ряда:

и применим к нему признак Д"Аламбера.

Так как величина предела не зависит от х и меньше единицы при любом х , то ряд сходится при всех значения, значит, область сходимости ряда х (–,+).

Проверим выполнение достаточных условий. Очевидно, что

для п = 0,1,2,... и для любых х ,

значит, функция разлагается в свой ряд Маклорена на всей числовой оси, т.е.

при х (–,+).

В рассмотренном примере для определения коэффициентов разложения функции в степенной ряд в окрестности точки х 0 =0 мы последовательно дифференцировали функцию до тех пор, пока не смогли вывести формулу для п -ой производной, и находили значения производных в данной точке. Затем выясняли, для каких х выполняются достаточные условия разложимости функции в ряд. Часто эти шаги приводят к громоздким вычислениям. Эти трудности иногда можно обойти, используя утверждение о том, что полученное любым способом разложение функции в степенной ряд будет её разложением в ряд Тейлора. Поэтому, чтобы получить разложение функции в степенной ряд, можно использовать уже известные разложения элементарных функций ряд Маклорена, применяя к ним правила сложения, умножения рядов и теоремы об интегрировании и дифференцировании степенных рядов.

Например, разложение функции f (x )= cosx можно получить, продифференцировав почленно разложение в ряд Маклорена функции f (x ) = sinx .

при х (–,+).

Аналогично, используя алгоритм разложения и теоремы об интегрировании и дифференцировании степенных рядов, можно получить разложения в ряд Маклорена следующих элементарных функций:

при х (–,+);

е сли т≥.0, или т -1, то область сходимости х  (-1;1),

е сли –1< т<0 , то область сходимости х  (-1;1].

Такое разложение называется биномиальным рядом. В частности, полагая в последнем разложении т = –1, получим

, х  (-1;1).

Заменяя в этом разложении х на выражение (–х ), получим

, при х  (–1;1).

Используя теорему об интегрировании степенных рядов и применяя её к разложению в ряд Маклорена функции
, получим

при х  (–1;1].

Заменяя в разложении функции
переменнуюх на выражение и интегрирую, получим

При х  [–1;1].

Используя биномиальный ряд– разложение в ряд Маклорена функции
, полагая
, заменяях на выражение
и интегрируя, получим

При х  (–1;1).

Пример 24.

Используя известные разложения, разложитьв ряд Мэклорена функцию
.

Решение

Необходимо найти разложение функции в ряд Маклорена, т.е. в степенной ряд по степеням х . Будем использовать разложение

при t  (–1;1].

Полагая t = x 2 , получим

Это разложение справедливо, когда
, откуда
, тогда область сходимости
.

Таким образом,

Умножая обе части равенства на х , получим

при х  [–1;1].

П ример 25

Используя известные разложения, разложись функцию
в ряд Тейлора в окрестности точки х 0 =1.

Решение.

Необходимо получить разложение функции в ряд Тейлора в окрестноститочки х 0 = 1, т.е. по степеням (х –1).

Будем использовать разложение

При t  (-1;1).

Для того, чтобы получить разложение данной функции по степеням (х –1) введем новую переменную t = x –1, тогда х = t + 1. Преобразуем данную функцию к новой переменной, полагая х = t + 1:

Полагая в известном разложении вместо t выражение и умножая на число,получим

при  (-1;1).

Полагая в полученном разложении t = x –1, возвратимся к исходной переменной х и получим разложение данной функции в степенной ряд по степеням (х -1):

Это разложение справедливо при условии
, откуда
.

Итак, получили разложение

при
.

Пример 26

Разложить функцию
в степенной ряд в точке
.

Решение.

Преобразуем данную функцию, используя свойства логарифмов:

Используя известное разложение

при t  (–1;1].

найдем разложение функции
, полагая t = 2x , и функции
, полагая t = –х :

разложение справедливо при 2х  (–1;1), т.е. при
.

Аналогично,

и разложение справедливо при (–х )  (–1;1), т.е. при х  (–1;1).

Степенные ряды можно почленно складывать и умножать на число, значит

причем это разложение справедливо на общей области сходимости, т.е. при
.

П ример 27

Разложить в ряд Маклорена функцию
.

Решение.

Преобразуем функцию

.

Используя известное разложение в ряд Маклорена функции у =(1+ t ) m , полагая
и
, получим

Используемый биномиальный ряд при
имеет область сходимостиt  (-1;1], следовательно, полученное разложение справедливо при
, откуда
,
.

Итак,
при
.

Любое натуральное число можно разложить на произведение простых множителей. Если вы не любите иметь дело с большими числами, такими как 5733, научитесь раскладывать их на простые множители (в данном случае это 3 x 3 x 7 x 7 x 13). Подобная задача часто встречается в криптографии, которая занимается проблемами информационной безопасности. Если вы еще не готовы создать собственную систему безопасной электронной почты, для начала научитесь раскладывать числа на простые множители.

Шаги

Часть 1

Нахождение простых множителей
  1. Начните с исходного числа. Выберите составное число больше 3. Нет смысла брать простое число, так как оно делится лишь на само себя и единицу.

    • Пример: разложим на произведение простых чисел число 24.
  2. Разложим данное число на произведение двух множителей. Найдем два меньших числа, произведение которых равно исходному числу. Можно использовать любые множители, но проще взять простые числа. Один из хороших способов состоит в том, чтобы попробовать поделить исходное число сначала на 2, затем на 3, потом на 5 и проверить, на какие из этих простых чисел оно делится без остатка.

    • Пример: если вы не знаете множителей для числа 24, попробуйте поделить его на малые простые числа. Так вы обнаружите, что данное число делится на 2: 24 = 2 x 12 . Это хорошее начало.
    • Поскольку 2 является простым числом, его хорошо использовать при разложении четных чисел.
  3. Начните строить дерево множителей. Эта простая процедура поможет вам разложить число на простые множители. Для начала проведите от исходного числа две "ветки" вниз. На конце каждой ветки напишите найденные множители.

    • Пример:
  4. Разложите на множители следующую строку чисел. Взгляните на два новых числа (вторая строка дерева множителей). Оба ли они относятся к простым числам? Если одно из них не является простым, также разложите его на два множителя. Проведите еще две ветки и напишите два новых множителя в третьей строке дерева.

    • Пример: 12 не является простым числом, поэтому его следует разложить на множители. Используем разложение 12 = 2 x 6 и запишем его в третьей строке дерева:
    • 2 x 6
  5. Продолжайте двигаться вниз по дереву. Если один из новых множителей окажется простым числом, проводите от него одну "ветку" и пишите на ее конце это же число. Простые числа не раскладываются на меньшие множители, поэтому просто переносите их на уровень ниже.

    • Пример: 2 является простым числом. Просто перенесите 2 из второй в третью строку:
    • 2 2 6
  6. Продолжайте раскладывать числа на множители, пока у вас не останутся одни простые числа. Проверяйте каждую новую строку дерева. Если хоть один из новых множителей не является простым числом, разложите его на множители и запишите новую строку. В конце концов у вас останутся одни простые числа.

    • Пример: 6 не является простым числом, поэтому его также следует разложить на множители. В то же время 2 представляет собой простое число, и мы переносим две двойки на следующий уровень:
    • 2 2 6
    • / / /\
    • 2 2 2 3
  7. Запишите последнюю строку в виде произведения простых множителей. В конце концов у вас останутся одни простые числа. Когда это случится, разложение на простые множители завершено. Последняя строка представляет собой набор простых чисел, произведение которых дает исходное число.

    • Проверьте ответ: перемножьте стоящие в последней строке числа. В результате должно получиться исходное число.
    • Пример: в последней строке дерева множителей содержатся числа 2 и 3. Оба этих числа являются простыми, поэтому разложение завершено. Таким образом, разложение числа 24 на простые множители имеет следующий вид: 24 = 2 x 2 x 2 x 3 .
    • Порядок множителей не имеет значения. Разложение можно записать также в виде 2 x 3 x 2 x 2.
  8. При желании упростите ответ с помощью степенной записи. Если вы знакомы с возведением чисел в степень, можно записать полученный ответ в более простом виде. Помните, что внизу записывается основание, а надстрочное число показывает, сколько раз это основание следует умножить на само себя.

    • Пример: сколько раз встречается число 2 в найденном разложении 2 x 2 x 2 x 3? Три раза, поэтому выражение 2 x 2 x 2 можно записать в виде 2 3 . В упрощенной записи получаем 2 3 x 3.

    Часть 2

    Использование разложения на простые множители
    1. Найдите наибольший общий делитель двух чисел. Наибольшим общим делителем (НОД) двух чисел называется максимальное число, на которое оба числа делятся без остатка. В приведенном ниже примере показано, как с помощью разложения на простые множители найти наибольший общий делитель чисел 30 и 36.

      • Разложим оба числа на простые множители. Для числа 30 разложение имеет вид 2 x 3 x 5. Число 36 раскладывается на простые множители следующим образом: 2 x 2 x 3 x 3.
      • Найдем число, которое встречается в обоих разложениях. Перечеркнем это число в обоих списках и напишем его с новой строки. Например, 2 встречается в двух разложениях, поэтому запишем 2 в новой строке. После этого у нас остается 30 = 2 x 3 x 5 и 36 = 2 x 2 x 3 x 3.
      • Повторяйте это действие, пока в разложениях не останется общих множителей. В оба списка входит также число 3, поэтому в новой строке можно записать 2 и 3 . После этого вновь сравните разложения: 30 = 2 x 3 x 5 и 36 = 2 x 2 x 3 x 3. Как видно, в них не осталось общих множителей.
      • Чтобы найти наибольший общий делитель, следует найти произведение всех общих множителей. В нашем примере это 2 и 3, поэтому НОД равен 2 x 3 = 6 . Это наибольшее число, на которое делятся без остатка числа 30 и 36.
    2. С помощью НОД можно упрощать дроби. Если вы подозреваете, что какую-то дробь можно сократить, используйте наибольший общий делитель. По описанной выше процедуре найдите НОД числителя и знаменателя. После этого поделите числитель и знаменатель дроби на это число. В результате вы получите ту же дробь в более простом виде.

      • К примеру, упростим дробь 30 / 36 . Как мы установили выше, для 30 и 36 НОД равен 6, поэтому поделим числитель и знаменатель на 6:
      • 30 ÷ 6 = 5
      • 36 ÷ 6 = 6
      • 30 / 36 = 5 / 6
    3. Найдем наименьшее общее кратное двух чисел. Наименьшее общее кратное (НОК) двух чисел - это наименьшее число, которое делится без остатка на оба данных числа. Например, НОК 2 и 3 является 6, поскольку это наименьшее число, которое делится на 2 и 3. Ниже приведен пример нахождения НОК с помощью разложения на простые множители:

      • Начнем с двух разложений на простые множители. Например, для числа 126 разложение можно записать как 2 x 3 x 3 x 7. Число 84 раскладывается на простые множители в виде 2 x 2 x 3 x 7.
      • Сравним, сколько раз каждый множитель встречается в разложениях. Выберите тот список, где множитель встречается максимальное число раз, и обведите это место. Например, число 2 встречается один раз в разложении для числа 126 и дважды в списке для 84, поэтому следует обвести 2 x 2 во втором списке множителей.
      • Повторите это действие для каждого множителя. Например, 3 встречается чаще в первом разложении, поэтому следует обвести в нем 3 x 3 . Число 7 встречается по одному разу в обоих списках, так что обводим 7 (неважно в каком списке, если данный множитель встречается в обоих списках одинаковое число раз).
      • Чтобы найти НОК, перемножьте все обведенные числа. В нашем примере наименьшим общим кратным чисел 126 и 84 является 2 x 2 x 3 x 3 x 7 = 252 . Это наименьшее число, которое делится на 126 и 84 без остатка.
    4. Используйте НОК для сложения дробей. При сложении двух дробей необходимо привести их к общему знаменателю. Для этого найдите НОК двух знаменателей. Затем умножьте числитель и знаменатель каждой дроби на такое число, чтобы знаменатели дробей стали равны НОК. После этого можно сложить дроби.

      • Например, необходимо найти сумму 1 / 6 + 4 / 21 .
      • С помощью приведенного выше метода можно найти НОК для 6 и 21. Оно равно 42.
      • Преобразуем дробь 1 / 6 так, чтобы ее знаменатель равнялся 42. Для этого необходимо поделить 42 на 6: 42 ÷ 6 = 7. Теперь умножим числитель и знаменатель дроби на 7: 1 / 6 x 7 / 7 = 7 / 42 .
      • Чтобы привести вторую дробь к знаменателю 42, поделим 42 на 21: 42 ÷ 21 = 2. Умножим числитель и знаменатель дроби на 2: 4 / 21 x 2 / 2 = 8 / 42 .
      • После того как дроби приведены к одинаковому знаменателю, их можно легко сложить: 7 / 42 + 8 / 42 = 15 / 42 .

Если функция f(x) имеет на некотором интервале, содержащем точку а, производные всех порядков, то к ней может быть применена формула Тейлора:
,
где r n – так называемый остаточный член или остаток ряда, его можно оценить с помощью формулы Лагранжа:
, где число x заключено между х и а.

Правила ввода функций :

Если для некоторого значения х r n →0 при n →∞, то в пределе формула Тейлора превращается для этого значения в сходящийся ряд Тейлора :
,
Таким образом, функция f(x) может быть разложена в ряд Тейлора в рассматриваемой точке х, если:
1) она имеет производные всех порядков;
2) построенный ряд сходится в этой точке.

При а =0 получаем ряд, называемый рядом Маклорена :
,
Разложение простейших (элементарных) функций в ряд Маклорена:
Показательные функции
, R=∞
Тригонометрические функции
, R=∞
, R=∞
, (-π/2 < x < π/2), R=π/2
Функция actgx не разлагается по степеням x, т.к. ctg0=∞
Гиперболические функции


Логарифмические функции
, -1
Биномиальные ряды
.

Пример №1 . Разложить в степенной ряд функцию f(x)= 2 x .
Решение . Найдем значения функции и ее производных при х =0
f(x) = 2 x , f(0) = 2 0 =1;
f"(x) = 2 x ln2, f"(0) = 2 0 ln2= ln2;
f""(x) = 2 x ln 2 2, f""(0) = 2 0 ln 2 2= ln 2 2;

f (n) (x) = 2 x ln n 2, f (n) (0) = 2 0 ln n 2= ln n 2.
Подставляя полученные значения производных в формулу ряда Тейлора, получим:

Радиус сходимости этого ряда равен бесконечности, поэтому данное разложение справедливо для -∞<x <+∞.

Пример №2 . Написать ряд Тейлора по степеням (х +4) для функции f(x)= e x .
Решение . Находим производные функции e x и их значения в точке х =-4.
f(x) = е x , f(-4) = е -4 ;
f"(x) = е x , f"(-4) = е -4 ;
f""(x) = е x , f""(-4) = е -4 ;

f (n) (x) = е x , f (n) ( -4) = е -4 .
Следовательно, искомый ряд Тейлора функции имеет вид:

Данное разложение также справедливо для -∞<x <+∞.

Пример №3 . Разложить функцию f(x) =lnx в ряд по степеням (х- 1),
(т.е. в ряд Тейлора в окрестности точки х =1).
Решение . Находим производные данной функции.
f(x)=lnx , , , ,

f(1)=ln1=0, f"(1)=1, f""(1)=-1, f"""(1)=1*2,..., f (n) =(-1) n-1 (n-1)!
Подставляя эти значения в формулу, получим искомый ряд Тейлора:

С помощью признака Даламбера можно убедиться, что ряд сходится при ½х-1½<1 . Действительно,

Ряд сходится, если ½х- 1½<1, т.е. при 0<x <2. При х =2 получаем знакочередующийся ряд, удовлетворяющий условиям признака Лейбница. При х=0 функция не определена. Таким образом, областью сходимости ряда Тейлора является полуоткрытый промежуток (0;2].

Пример №4 . Разложить в степенной ряд функцию .
Решение . В разложении (1) заменяем х на -х 2 , получаем:
, -∞

Пример №5 . Разложить в ряд Маклорена функцию .
Решение . Имеем
Пользуясь формулой (4), можем записать:

подставляя вместо х в формулу –х, получим:

Отсюда находим: ln(1+x)-ln(1-x) = -
Раскрывая скобки, переставляя члены ряда и делая приведение подобных слагаемых, получим
. Этот ряд сходится в интервале (-1;1), так как он получен из двух рядов, каждый из которых сходится в этом интервале.

Замечание .
Формулами (1)-(5) можно пользоваться и для разложения соответствующих функций в ряд Тейлора, т.е. для разложения функций по целым положительным степеням (х-а ). Для этого над заданной функцией необходимо произвести такие тождественные преобразования, чтобы получить одну из функций (1)-(5), в которой вместо х стоит k(х-а ) m , где k – постоянное число, m – целое положительное число. Часто при этом удобно сделать замену переменной t =х-а и раскладывать полученную функцию относительно t в ряд Маклорена.

Этот метод основан на теореме о единственности разложения функции в степенной ряд. Сущность этой теоремы состоит в том, что в окрестности одной и той же точки не может быть получено два различных степенных ряда, которые бы сходились к одной и той же функции, каким бы способом ее разложение ни производилось.

Пример №5а . Разложить в ряд Маклорена функцию , указать область сходимости.
Решение. Сначала найдем 1-x-6x 2 =(1-3x)(1+2x) , .
на элементарные:

Дробь 3/(1-3x) можно рассматривать как сумму бесконечно убывающей геометрической прогрессии знаменателем 3x, если |3x| < 1. Аналогично, дробь 2/(1+2x) как сумму бесконечно убывающей геометрической прогрессии знаменателем -2x, если |-2x| < 1. В результате получим разложение в степенной ряд

с областью сходимости |x| < 1/3.

Пример №6 . Разложить функцию в ряд Тейлора в окрестности точки х =3.
Решение . Эту задачу можно решить, как и раньше, с помощью определения ряда Тейлора, для чего нужно найти производные функции и их значения при х =3. Однако проще будет воспользоваться имеющимся разложением (5):
=
Полученный ряд сходится при или –3

Пример №7 . Написать ряд Тейлора по степеням (х -1) функции ln(x+2) .
Решение .


Ряд сходится при , или -2 < x < 5.

Пример №8 . Разложить функцию f(x)=sin(πx/4) в ряд Тейлора в окрестности точки x =2.
Решение . Сделаем замену t=х-2:

Воспользовавшись разложением (3), в котором на место х подставим π / 4 t, получим:

Полученный ряд сходится к заданной функции при -∞< π / 4 t<+∞, т.е. при (-∞Таким образом,
, (-∞

Приближенные вычисления с помощью степенных рядов

Степенные ряды широко используются в приближенных вычислениях. С их помощью с заданной точностью можно вычислять значения корней, тригонометрических функций, логарифмов чисел, определенных интегралов. Ряды применяются также при интегрировании дифференциальных уравнений.
Рассмотрим разложение функции в степенной ряд:

Для того, чтобы вычислить приближенное значение функции в заданной точке х , принадлежащей области сходимости указанного ряда, в ее разложении оставляют первые n членов (n – конечное число), а остальные слагаемые отбрасывают:

Для оценки погрешности полученного приближенного значения необходимо оценить отброшенный остаток r n (x) . Для этого применяют следующие приемы:
  • если полученный ряд является знакочередующимся, то используется следующее свойство: для знакочередующегося ряда, удовлетворяющего условиям Лейбница, остаток ряда по абсолютной величине не превосходит первого отброшенного члена .
  • если данный ряд знакопостоянный, то ряд, составленный из отброшенных членов, сравнивают с бесконечно убывающей геометрической прогрессией.
  • в общем случае для оценки остатка ряда Тейлора можно воспользоваться формулой Лагранжа: ax).

Пример №1 . Вычислить ln(3) с точностью до 0,01.
Решение . Воспользуемся разложением , где x=1/2 (см. пример 5 в предыдущей теме):

Проверим, можем ли мы отбросить остаток после первых трех членов разложения, для этого оценим его с помощью суммы бесконечно убывающей геометрической прогрессии:

Таким образом, мы можем отбросить этот остаток и получаем

Пример №2 . Вычислить с точностью до 0,0001.
Решение . Воспользуемся биномиальным рядом. Так как 5 3 является ближайшим к 130 кубом целого числа, то целесообразно число 130 представить в виде 130=5 3 +5.



так как уже четвертый член полученного знакочередующегося ряда, удовлетворяющего признаку Лейбница, меньше требуемой точности:
, поэтому его и следующие за ним члены можно отбросить.
Многие практически нужные определенные или несобственные интегралы не могут быть вычислены с помощью формулы Ньютона-Лейбница, ибо ее применение связано с нахождением первообразной, часто не имеющей выражения в элементарных функциях. Бывает также, что нахождение первообразной возможно, но излишне трудоемко. Однако если подынтегральная функция раскладывается в степенной ряд, а пределы интегрирования принадлежат интервалу сходимости этого ряда, то возможно приближенное вычисление интеграла с наперед заданной точностью.

Пример №3 . Вычислить интеграл ∫ 0 1 4 sin (x) x с точностью до 10 -5 .
Решение . Соответствующий неопределенный интеграл не может быть выражен в элементарных функциях, т.е. представляет собой «неберущийся интеграл». Применить формулу Ньютона-Лейбница здесь нельзя. Вычислим интеграл приближенно.
Разделив почленно ряд для sinx на x , получим:

Интегрируя этот ряд почленно (это возможно, так как пределы интегрирования принадлежат интервалу сходимости данного ряда), получаем:

Так как полученный ряд удовлетворяет условиям Лейбница и достаточно взять сумму первых двух членов, чтобы получить искомое значение с заданной точностью.
Таким образом, находим
.

Пример №4 . Вычислить интеграл ∫ 0 1 4 e x 2 с точностью до 0,001.
Решение .
. Проверим, можем ли мы отбросить остаток после второго члена полученного ряда.
≈0.0001<0.001. Следовательно, .

Есть вопросы?

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: